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Abstract. π and η decay modes of light baryon resonances are investigated within a chiral quark model
whose hyperfine interaction is based on Goldstone-boson exchange. For the decay mechanism a modified
version of the 3P0 model is employed. Our primary aim is to provide a further test of the recently proposed
Goldstone-boson exchange constituent quark model. We compare the predictions for π and η decay widths
with experiment and also with results from a traditional one-gluon exchange constituent quark model.
The differences between nonrelativistic and semirelativistic versions of the constituent quark models are
outlined. We also discuss the sensitivity of the results on the parameterization of the meson wave function
entering the 3P0 model.

PACS. 12.39.Pn Potential models – 13.30.Eg Hadronic decays – 14.20.Gk Baryon resonances with S = 0

1 Introduction

The investigation of hadronic transitions of baryon reso-
nances is currently of high interest [1]. On the experimen-
tal side, there are considerable efforts to measure these
reactions in order to gain more and improved data on the
resonance states. On the theoretical side, a quantitative
description of the very details of the baryon ground and
excited states represents a big challenge for all hadron
models. Obviously the aim is to reach a comprehensive
understanding of the low-energy hadron phenomenology
on the basis of quantum chromodynamics (QCD).

A promising approach to low-energy hadrons consists
in constituent quark models (CQMs). Starting from rudi-
mentary attempts more than two decades ago, one has
constantly improved the description and gained a lot of
insight into the properties of hadrons at low and interme-
diate energies. Evidently, CQMs can at most be effective
models of QCD in a domain where the fundamental the-
ory is not (yet) accurately solvable. However, the concept
of constituent quarks, in the beginning mainly motivated
by symmetry considerations of hadron multiplets, nowa-
days gets more and more justified on the basis of QCD
itself, as indicated by quenched lattice simulations [2,3].
It appears that the spontaneous breaking of chiral sym-
metry (SBχS) of QCD is responsible for the generation
of constituent quarks as quasiparticles below a certain
scale. Numerous evidences hint to a chirally broken phase
(Nambu-Goldstone mode) of QCD.
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Recently a chiral constituent quark model (CCQM)
has been proposed that exploits the SBχS of QCD in de-
ducing the hyperfine interaction of constituent quarks in
light and strange baryons [4]. It relies on constituent quark
and Goldstone-boson fields as the relevant degrees of free-
dom in an effective interaction Lagrangian [5]. The so-
called Goldstone-boson exchange (GBE) CQM introduces
new symmetry properties into the hyperfine interaction of
constituent quarks, which are rather different from tradi-
tional CQMs advocating one-gluon exchange (OGE) dy-
namics [6]. The GBE CQM has turned out rather success-
ful in producing an accurate description of the whole light
and strange baryon phenomenology in a unified frame-
work [4].

However, the reproduction of the baryon ground-state
and resonance energies is just one item that has to be ful-
filled by a successful hadron model. In addition, any CQM
should also provide for a description of dynamical proper-
ties accessible through all types of reaction processes. Here
we specifically study the performance of the GBE CQM
in hadronic decays of N and ∆ resonances. Thereby we
produce a further test of the reliability of the new kind of
hyperfine interaction based on GBE.

We obtain three-quark wave functions for all the
needed ground and excited baryon states by solving a
differential Schrödinger-type equation with the stochas-
tic variational method (SVM) [7]. These wave functions
are then employed within a certain decay model in order
to calculate partial widths for π and η decays of N and
∆ resonance states up to ∼1.8 GeV. For the decay mech-



92 The European Physical Journal A

anism, we use a modified version of the 3P0 model, which
provides a microscopic description of the decay process,
allowing one to take into account the internal structure
of the emitted meson. Thereby it improves upon the el-
ementary emission model (EEM) which can be recovered
in the approximation of a point-like meson. We compare
the results to the experimental data and contrast them to
an analogous study along a traditional version of the OGE
CQM [8]. Our main aim is twofold: First we want to see
how well the available data are reproduced by the GBE
CQM, and second we wish to find possible differences be-
tween the two distinct types of CQMs.

In the following section we give a short description
of the quark models used in the present study. We spec-
ify their parameterizations both in a nonrelativistic and a
semirelativistic framework. In sect. 3 we explain the spe-
cific decay model we use here and give the pertinent formu-
lae for the calculation of partial decay widths. The results
are presented in sect. 4 along with a discussion of their
sensitivity on different ingredients both in the CQMs and
in the decay model. Our conclusions are given in sect. 5.

2 Constituent quark models

Let us start by specifying the constituent quark models
we use in the present study. The total three-quark Hamil-
tonian for baryons has the general form

H = H0 + V, (1)

where H0 is the kinetic-energy operator and V contains
all the quark-quark interactions, i.e. confinement plus hy-
perfine potentials. For constituent quarks with effective
masses of the order of a few hundred MeV the kinetic-
energy operator should be taken in relativistic form

HSR
0 =

3∑
i=1

√
�p 2

i + m2
i , (2)

with mi the masses and �pi the 3-momenta of the con-
stituent quarks. A free Hamiltonian as in eq. (2) leads to
the so-called relativized or semirelativistic (SR) CQM [9].
It helps to avoid pathologies that usually appear in nonrel-
ativistic constituent quark models [6]. We devote our at-
tention primarily to the SR versions of the GBE and OGE
CQMs as described below. Nevertheless, in order to pro-
vide a connection to previous studies of hadronic baryon
decays, we consider also nonrelativistic (NR) versions of
the two types of CQMs, which use the kinetic-energy op-
erator in the form

HNR
0 =

3∑
i=1

(
mi +

�pi
2

2mi

)
. (3)

2.1 GBE constituent quark model

For the CCQM relying on GBE dynamics we specifically
adhere to the version published in ref. [4]. It comes with

a mutual quark-quark interaction

Vij = Vconf + Vχ, (4)

with a confinement potential in linear form

Vconf(rij) = V0 + Crij (5)

and the chiral interaction consisting of only the spin-spin
part of the pseudoscalar-meson exchange

Vχ(�rij) =

[
3∑

F=1

Vπ(�rij)λF
i λF

j +
7∑

F=4

VK(�rij)λF
i λF

j

+Vη(�rij)λ8
i λ

8
j +

2
3
Vη′(�rij)

]
�σi · �σj . (6)

Here �σi are the Pauli spin matrices and λi the Gell-
Mann flavor matrices of the individual quarks. The meson-
exchange potentials are parameterized in the form

Vγ(�rij) =
g2

γ

4π

1
12mimj

{
µ2

γ

e−µγrij

rij
− Λ2

γ

e−Λγrij

rij

}
, (7)

(γ = π,K, η, η′) ,

with µγ the meson masses, gγ the meson-quark coupling
constants, and Λγ the cut-off parameters resulting from
the smearing of the δ-functions (for details see refs. [4]
and also [6]). A single coupling constant g8 is taken for
all pseudoscalar octet mesons. In case of the SR GBE
CQM it is set equal to the pion-quark coupling constant,
whose value can be deduced from πN phenomenology via
the Goldberger-Treiman relation. The coupling constant
g0 for the singlet η′ is determined differently by a fit to
the baryon spectra. The cut-offs Λγ are assumed to scale
with the phenomenological meson masses according to the
simple rule

Λγ = Λ0 + κµγ . (8)

The strength and depth of the confinement poten-
tial (5) are determined by C and V0, respectively. While
these values have also been fitted to the baryon spectra,
it is interesting to remark that for the SR GBE CQM the
strength C comes out just in consistency with the QCD
string tension. The parameter V0 is needed merely to fix
the ground-state level at the nucleon mass. All the param-
eter values are collected in table 1.

Table 1 also contains the parameters for a NR ver-
sion of the GBE CQM [10], i.e. when the potential (4) is
used together with the kinetic-energy operator (3). While
the description of the N and ∆ is achieved with a simi-
lar quality (cf. fig. 1 and table 3, below), it is worthwhile
to note the drastically different values of the fitted pa-
rameters (first 6 lines in table 1) in both the confinement
and chiral interactions. In particular, the confinement po-
tential becomes unrealistically weak, while the hyperfine
potential gets much enhanced as compared to the SR case.
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Table 1. Parameters of the GBE CQM for the semirelativis-
tic [4] and nonrelativistic [10] parameterizations. The first six
have been fitted to the baryon spectra (including hyperons)
while the last four were given currently accepted or experi-
mental values.

Parameters SR NR
g2
8

4π
0.67 1.24

(g0/g8)
2 1.34 2.23

Λ0 (fm−1) 2.87 5.82
κ 0.81 1.34
C (fm−2) 2.33 0.77
V0 (MeV) −416 −112
mu = md (MeV) 340 340
µπ (MeV) 139 139
µη (MeV) 547 547
µη′ (MeV) 958 958

2.2 OGE constituent quark model

For the purpose of comparison to a different kind of quark-
quark dynamics we employ a traditional OGE CQM.
Specifically, it is the model following Bhaduri, Cohler, and
Nogami (BCN) [8]. In this case the total potential has the
form

Vij =V0+Crij −
2b

3rij
+

αs

9mimj
Λ2 e−Λrij

rij
�σi · �σj , (9)

i.e. it consists of a short-range Coulomb term, a linear con-
finement, and a flavor-independent spin-spin interaction.
The parameter values for the original BCN potential were
determined from a fit to the meson spectra, and they were
also used in a previous study [11]. We have redetermined
the model parameters from a fit to the baryon spectra.
Their values are summarized in table 2, from where it can
be seen that they differ from the parameter set used in
ref. [8], specifically in the NR case.

Again the spectra are produced in quite a similar man-
ner by both the SR and NR versions (cf. fig. 2 and table 3).
Of course, the typical difficulties of OGE CQMs appear,
e.g., with respect to the relative orderings of the lowest
positive- and negative-parity excitations.

Before concluding this section a few remarks about the
above versions of the GBE and OGE CQMs are in order.

Table 2. Parameters of the OGE CQM after BCN [8] for the
semirelativistic and nonrelativistic parameterizations. Four pa-
rameters were determined from a fit to the nonstrange baryon
spectra (b and αs are assumed to be equal) while the quark
masses are the same as in the original BCN model.

Parameters SR NR

b = αs 0.57 0.825
Λ (fm−1) 2.7 5
C (fm−2) 3.12 2.26
V0 (MeV) −409 −366
mu = md (MeV) 337 337

Fig. 1. Energy levels (solid lines) of the lowest N and ∆ states
with total angular momentum and parity JP for the semirel-
ativistic (top) and the nonrelativistic versions (bottom) of the
GBE CQM. The shadowed boxes represent the experimental
values with their uncertainties according to the most recent
compilation of the Particle Data Group [12].

For both cases the models considered here contain only
the most important ingredients for the quark-quark inter-
actions in baryon spectra, i.e. essentially confinement plus
spin-spin hyperfine interactions. However, both the GBE
and OGE models bring about also further force compo-
nents, such as central, tensor, and spin-orbit forces. While
their influence must be minor in the N and ∆ spectra
(as demanded by their phenomenological structure) they
could be of enhanced importance in dynamical observables
such as hadronic widths, nucleon form factors, etc. In the
study we present below, we shall thus essentially explore
the effects of the most prominent parts of the inter-quark
forces. The GBE CQM has so far been published only with
the spin-spin part of the quark-quark interaction [4], [10].
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Table 3. Energies of baryon resonances predicted by the different CQMs considered in this work. For all models the nucleon
mass is 939 MeV.

N∗ Jπ M (MeV)

GBE SR GBE NR OGE SR OGE NR

N1440
1
2

+
1459 1465 1578 1743

N1710
1
2

+
1776 1712 1860 1925

∆1232
3
2

+
1240 1232 1232 1232

∆1600
3
2

+
1718 1585 1855 1967

N1520-N1535
3
2

−
- 1
2

−
1519 1529 1521 1531

N1650-N1675-N1700
1
2

−
- 5
2

−
- 3
2

−
1647 1652 1691 1681

∆1620-∆1700
1
2

−
- 3
2

−
1642 1642 1621 1654

N1680-N1720
5
2

+
- 3
2

+
1728 1679 1858 1883

Fig. 2. As fig. 1 but for the OGE CQM after BCN in the
semirelativistic (top) and nonrelativistic versions (bottom).

For consistency in the comparison, also the OGE CQM is
considered only with the spin-spin component.

3 The 3P0 model for strong decays

Investigations of hadronic decays have a long history with
first attempts dating back to the early times of quark mod-
els. Still, the definite form of the decay operator is not
yet known. Specific difficulties arising in strong interac-
tion decays are connected with the extended sizes of both
the baryons and the mesons involved in the decay process.
Obviously one would require a reliable microscopic model
that consistently accounts for the description of both the
hadron states and the decay mechanism.

The simplest ansatz for the decay operator is furnished
by the elementary emission model (EEM) [13–15]. Therein
a point-like meson is produced by a single constituent
quark in the decaying baryon state. Evidently, this as-
sumption leads to shortcomings, as found in a number
of investigations with various CQMs (cf., for example,
ref. [16]). While the model usually does well for the so-
called “structure-independent” transitions (in the termi-
nology of ref. [17]), it completely fails for transitions from
radial excitations to the ground state. Such findings ob-
tained before in case of the OGE CQM have subsequently
also been confirmed by a preliminary study of baryon de-
cays within the semirelativistic GBE CQM in ref. [18].

An improved description of hadron decays is provided
by the 3P0 (or quark-pair creation) model. Here a qq̄ pair is
created from the vacuum and by a subsequent rearrange-
ment the final meson and baryon states are produced. The
3P0 model naturally allows to implement the extended
structure of the emitted meson. Thereby, this model pro-
vides also a reasonable description of transitions involving
radial excitations, without pretending to give the final an-
swer for a correct treatment of the decay process of light
baryon resonances. By definition, the quark-antiquark pair
must carry the quantum numbers of the vacuum, i.e. it is
a color and flavor singlet, has positive P - and C-parity,
total angular momentum J = 0 and carries total linear
momentum zero. From P = −(−1)L and C = (−1)L+S
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one deduces as the simplest choice L = S = 1. The cor-
responding transition operator for the decay can thus be
expressed as [19]

T = γ
∑
i,j

∫
d3pqd3pq̄δ(�pq + �pq̄)

×
∑
m

[
C00

1m1−mYm
1 (�pq̄ − �pq)(χ−m

1 (i, j)φ0(i, j)
]

×b†i (�pq)d
†
j(�pq̄) , (10)

where, in evident notation, the momenta refer to the quark
and antiquark states created by the operators b†i and d†j ,
respectively. YM

L (�p ) = pLY M
L (p̂) is a solid harmonics func-

tion, which gets coupled with the triplet spin wave func-
tion χ to give J = 0. φ0 is the flavor singlet wave function
and the summation

∑
i,j runs over spin and flavor indices.

The pair creation constant γ is a dimensionless coefficient
which is the only adjustable parameter of the model (apart
from factors entering an eventual parameterization of the
meson wave functions). Note that in eq. (10) we have omit-
ted a factor 3 in front of this constant which is frequently
used to cancel a factor 1/3 coming from the matrix ele-
ment of color wave functions, which are not written out
explicitly here.

The transition matrix element for the process B →
B′M is then expressed as

〈B′M | T | B〉 ≡ 〈B′M | H | B〉 =

3γ
∑
m

C00
1m1−m Im =: δ(�P − �P ′ − �q )A . (11)

Here, the factor 3 comes from the different possibilities
of rearranging the quarks in the initial and final state,
taking into account the symmetry of the wave functions.
The momentum integral of eq. (11) takes the form

Im =
∫

d3p1d3p2d3p3d3p4d3p5Ym
1 (�p4−�p5)δ(�p4+�p5)Φ−m

pair

× [ΨB′(�p1, �p2, �p4)ΦB′ ]∗ [ΨM (�p3, �p5)ΦM ]∗

× [ΨB(�p1, �p2, �p3)ΦB ] . (12)

Here, �p1, �p2, �p3 are the individual quark momenta of the
initial baryon B which sum up to a total momentum
�P =

∑3
i=1 �pi = 0 in the rest frame of B. The meson

carries away the momentum �q = �p3 + �p5, and the residual
baryon B′ has momentum �P ′ = �p1 + �p2 + �p4 = −�q, due
to momentum conservation in the decay process. Finally,
we denoted the combined spin-isospin wave functions in-
volved in the decay process by Φ.

In a next step, one separates the center-of-mass and
relative motions in all hadron wave functions, what per-
mits to carry out some of the integrations in eq. (12):

Im = δ(�P − �P ′ − �q)
∫

d3px d3py Ym
1 (2�q + 2�py)Φ−m

pair

×
[
ΨB′

(
�px,

2
3
�q + �py

)
ΦB′

]∗ [
ΨM

(
−1

2
�q − �py

)
ΦM

]∗

× [ΨB(�px, �py)ΦB ] , (13)

where �px = 1
2 (�p1 − �p2) and �py = 1

3 (2�p3 − �p1 − �p2) are the
momenta conjugate to the Jacobi coordinates �x and �y.

In ref. [11], it was observed that the 3P0 model can
be modified so as to reproduce the EEM in the limit of
a point-like meson. Taking also into account a relativistic
boost effect, this requires the replacements

γ −→ γ

√
µ

ω
, (14)

Ym
1 (2�q + 2�py) −→ Ym

1

([
1 +

ω

2m

]
�q +

ω

m
�py

)
, (15)

where µ is the mass of the emitted meson and ω =√
µ2 + �q 2 its energy.
The partial decay width is then obtained by

Γ =
1
π

q E ω

MB
| A |2, (16)

where MB is the mass of the decaying resonance, E the en-
ergy of the final-state baryon, and A is defined by eq. (11).
In eq. (16) one still has to sum over final and to average
over initial spin-isospin channels.

For the meson wave function in configuration space we
first adopt a simple parameterization of the Gaussian type

ΨG(�r ) =
1

(πR2)3/4
exp

(
− r2

2R2

)
, (17)

where the parameter R2 is related to the mean square
radius of the meson by 〈r2〉 = 3

2R2. While facilitating the
calculations, this choice certainly cannot be regarded as a
realistic representation of a meson wave function. We shall
therefore investigate the influence of a different analytic
form of meson wave functions on the baryon decay widths.

From the Fourier transform of the electromagnetic
pion form factor, one can deduce a pion wave function
that takes a Yukawa-like form:

ΨY (�r ) =
1√
4π

m√
r

exp
(
−mr

2

)
. (18)

Here the parameter m is related to the mean square radius
of the meson by 〈r2〉 = 6/m2. Even if it is not physically
meaningful, this expression may serve as a comparison to
the Gaussian form.

A graphical representation of the meson wave functions
is given in fig. 3, where we compare the above forms to
the wave function that follows from the original potential
of Bhaduri et al. [8]. It can be seen that the exact wave
function lies just between the extreme choices of a Yukawa
and a Gaussian form. The parameters of eqs. (17) and (18)
have been fitted to give the same root mean square ra-
dius for the pion as the wave function from the potential
of ref. [8], that is rπ = 0.565 fm. For simplicity we use
the same parameterization for the wave function of the
η-meson.

Applying the 3P0 model to wave functions stemming
from the GBE dynamics, one is quite immediately faced
with the apparent paradox that one describes the pion at
the same time as an elementary field at the level of the
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Fig. 3. Meson wave functions in momentum (top) and config-
uration space (bottom). Gaussian and Yukawa forms are com-
pared to the exact wave function following from the original
quark-antiquark potential of Bhaduri et al. [8].

interaction and as a qq̄ bound state at the level of decays.
But then it has to be stated that even in the GBE, the
pion is not really a fundamental field but still a bound
state of quark and anti-quark, whose Goldstone (quasi-
particle) character arises from the spontaneous breaking
of chiral symmetry. Only in practical parameterizations
one starts from a phenomenological Lagrangian including
an effective pion field in order to get the proper symme-
try structure of the interaction. It would be interesting
to establish a relationship between the spatial extension
of the pion, as implied by the form factor in the interac-
tion, see eq. (8), and the pion wave function, like eq. (17);
as well as between the corresponding meson-baryon ver-
tices and coupling strength. However, the form factor in
the interaction rather represents a quark extension. The
above-mentioned relationship is therefore not trivial, since
it would require a more microscopic description of both the

interaction and the decay process. On the effective level
we work at, the parameters assumed in different models
have to be considered purely phenomenological.

4 Results for π and η partial decay widths

In this section we shall present the results for the π and η
decay modes of N and ∆ resonances, as predicted by the
CQMs specified in sect. 2. At the beginning we discuss
some features of the baryon wave functions.

4.1 Three-quark wave functions

The solutions of the three-quark Hamiltonians have been
obtained by solving the corresponding Schrödinger-type
differential equations with the SVM [7]. The accuracy that
is attained with respect to the eigenenergies in table 3 is
generally within a few percent even for the highest states
considered. In this context the SVM was carefully con-
terchecked with complementary approaches, such as the
Faddeev method [6,20]. Another measure for the accuracy
of the solution of the three-quark problem is the mean
square radius of the wave function. In the context of the
present work this quantity is also useful for understand-
ing some general characteristics of the results for decay
widths, which are connected to the baryon sizes. In ta-
ble 4 we therefore quote mean square radii of the N and
∆ ground-state wave functions for the CQMs considered.
The values refer to the case with point-like constituent
quarks. Therefore they are probably not realistic and must
not be compared to experimental values. They are only
useful to get insight into the relative extensions of the
wave functions from each CQM.

Obviously, the values of the mean square radii are all
rather small. Within each type of CQM, GBE or OGE,
they are smaller in the semirelativistic cases, as it was al-
ready observed in ref. [9]. This may be viewed as a conse-
quence of the stronger confinement generally needed in the
semirelativistic CQMs. Inspection of the absolute magni-
tudes of the relevant quantities in tables 1, 2, and 4 shows,
however, that confinement cannot be the only factor de-
termining the mean square radii of the wave functions
(note that the differences in confining strengths are much
larger for the GBE parameterizations). A smaller exten-
sion of the baryon wave functions evidently implies even
larger values for internal momenta (in the semirelativistic
CQMs). This will help to explain certain results for decay
widths involving high momenta in the next sections.

Table 4. Mean square radii of N and ∆ from the various
CQMs, assuming point-like constituent quarks.

GBE SR GBE NR OGE SR OGE NR〈
r2

N

〉
(fm2) 0.092 0.134 0.076 0.219〈

r2
∆

〉
(fm2) 0.152 0.172 0.115 0.288
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Table 5. Decay widths of baryon resonances for the GBE and OGE constituent quark models both in nonrelativistic and
semirelativistic parameterizations. A Gaussian-type meson wave function with rπ = rη = 0.565 fm was used along with a
modified 3P0 decay model. Experimental data are from ref. [12]; for the quoted uncertainties refer to the text.

N∗ Jπ Γ (N∗ → Nπ) (MeV) Γ (N∗ → Nη) (MeV)

GBE SR GBE NR OGE SR OGE NR Exp. GBE SR GBE NR OGE SR OGE NR Exp.

N1440
1
2

+
517 258 1064 161 (227 ± 18)+70

−59 6 10

N1710
1
2

+
54 14 202 8 (15 ± 5)+30

−5 26 4 50 10

∆1232
3
2

+
120 120 120 120 (119 ± 1)+5

−5

∆1600
3
2

+
43 34 174 14 (61 ± 26)+26

−10

N1520
3
2

−
131 161 108 168 (66 ± 6)+9

−5 0 0 0 0

N1535
1
2

−
336 75 462 109 (67 ± 15)+55

−17 64 64 64 64 (64 ± 19)+76
−15

N1650
1
2

−
53 5 87 8 (109 ± 26)+36

−3 113 68 140 94 (10 ± 5)+4
−1

N1675
5
2

−
34 35 40 52 (68 ± 8)+14

−4 2 4 3 5

N1700
3
2

−
6 6 7 9 (10 ± 5)+3

−3 0 1 1 1

∆1620
1
2

−
26 3 41 5 (38 ± 8)+8

−6

∆1700
3
2

−
28 29 20 38 (45 ± 15)+20

−10

N1680
5
2

+
85 85 149 313 (85 ± 7)+6

−6 0 1 2 6

N1720
3
2

+
377 100 689 238 (23 ± 8)+9

−5 15 11 30 25

γ 15.365 14.635 18.015 11.868 5.929 6.682 6.572 4.937

4.2 π decays

The results for the partial widths of the π decay modes of
the N and ∆ resonances are shown in table 5. All values
have been calculated with the Gaussian-type parameter-
ization of the meson wave function of eq. (17). For the
baryons, the theoretical masses have been used as pre-
dicted by the different CQMs in table 3. In each case the
strength parameter γ introduced into the decay opera-
tor in eq. (10) has been adjusted so as to reproduce the
∆1232 → Nπ decay width. All the other decay widths can
then be considered as genuine predictions of the CQMs
along the modified 3P0 model.

Table 5 also allows a comparison of the theoretical re-
sults to experimental data as compiled by the Particle
Data Group (PDG) [12]. For the latter there arise two
kinds of uncertainties: First, the total decay width of each
resonance is given by a central value and a lower and up-
per bound. Second, the partial decay width has its own
uncertainty. In table 5 we quote the value for the π decay
widths deduced from the central value of the total width
and first add the uncertainty from the partial decay width
itself (numbers inside the parentheses in the last column).
Then we indicate also the range of the total decay width
by an upper and lower bound. We understand that the
total uncertainty in a partial decay width must be esti-
mated by combining both types of uncertainties (inherent
separately in the total and partial widths).

Let us now examine the theoretical results in detail.
For the N1440

1
2

+ resonance the SR GBE prediction is
obviously too large, whereas the pertinent NR result lies
within the experimental error bars. The SR OGE result

overshoots the experiment by far, its NR version is also
much smaller than the SR one and lies just at the lower
end of the experimental error bar. The results for the next
1
2

+ excitation of the nucleon, the N1710, show a similar rel-
ative pattern as the ones for the Roper resonance, though
all the values are smaller by about an order of magnitude.
The fact that for each case, N1440 and N1710, the predic-
tions of the SR parameterizations of both the OGE and
GBE models exceed by far their NR counterparts can be
readily understood observing the higher-momentum com-
ponents present in the SR parameterizations, as compared
to the NR ones (cf. the discussion of the baryon wave func-
tions in the previous subsection). In case of the OGE SR
this effect is enhanced by a phase space that is much too
large (due to the bad prediction of the resonance energy).

For the N1720
3
2

+ resonance the results again have
similar characteristics, with the SR cases drastically over-
shooting the experimental data. Here, however, none of
the NR versions can come close to the rather small exper-
imental width. This problem was already encountered in
similar analyses [21,22] and may hint to a wrong symme-
try assignment (or a strong mixing) of this state. Only for
the N1680

5
2

+ resonance the GBE CQM produces correct
results, both in its SR and NR versions. In this case the
results from both variants of the OGE CQM are again too
high.

For the negative-parity N1535
1
2

− resonance the SR re-
sults are also much too high, whereas the predictions from
the NR versions agree with experiment. For the N1650

1
2

−

the situation is just reversed. Most remarkably, in all in-
stances the widths of the N1535 resonance are larger than
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Table 6. Same as table 5 but using a Yukawa-type meson wave function with rπ = rη = 0.565 fm.

N∗ Jπ Γ (N∗ → Nπ) (MeV) Γ (N∗ → Nη) (MeV)

GBE SR GBE NR OGE SR OGE NR Exp. GBE SR GBE NR OGE SR OGE NR Exp.

N1440
1
2

+
528 363 1015 204 (227 ± 18)+70

−59 6 15

N1710
1
2

+
59 10 179 7 (15 ± 5)+30

−5 32 7 51 14

∆1232
3
2

+
120 120 120 120 (119 ± 1)+5

−5

∆1600
3
2

+
41 49 142 11 (61 ± 26)+26

−10

N1520
3
2

−
140 225 109 187 (66 ± 6)+9

−5 0 1 0 1

N1535
1
2

−
251 31 412 61 (67 ± 15)+55

−17 64 64 64 64 (64 ± 19)+76
−15

N1650
1
2

−
39 1 78 3 (109 ± 26)+36

−3 110 59 138 86 (10 ± 5)+4
−1

N1675
5
2

−
35 42 40 55 (68 ± 8)+14

−4 3 6 3 7

N1700
3
2

−
6 7 7 9 (10 ± 5)+3

−3 1 1 1 1

∆1620
1
2

−
20 1 39 2 (38 ± 8)+8

−6

∆1700
3
2

−
28 35 21 40 (45 ± 15)+20

−10

N1680
5
2

+
98 144 158 379 (85 ± 7)+6

−6 1 2 2 10

N1720
3
2

+
276 58 545 132 (23 ± 8)+9

−5 14 11 25 22

γ 15.931 14.741 18.854 11.961 6.608 7.022 7.056 5.469

the ones of N1650, contrary to experiment, where the N1535

width appears to be smaller or is at most as large as
the N1650 width (taking into account the experimental
uncertainties). Regarding the L = 1, S = 3

2 multiplet
N1650-N1675-N1700, one notes that the SR parameteriza-
tions give approximately the correct ratios of these widths,
as it is expected from the corresponding spin-isospin ma-
trix elements. These features are not found for the NR
parameterizations due to the exceedingly small value of
the N1650 width.

Concerning the negative-parity N excitations, it is in-
teresting to note that certain resonances are more sensi-
ble to the different parameterizations than others. Specifi-
cally, the S-wave resonances N1535 and N1650 (and likewise
also ∆1620) appear to be “structure dependent” [17]. This
behaviour results in widths sometimes orders of magni-
tudes apart for different models. On the other hand, the
D-wave resonances N1520, N1675, and N1700 (and likewise
also ∆1700) are found to be “structure independent”. Their
decay widths are practically independent of the underly-
ing spectroscopic model. These properties can be easily
understood in the framework of the EEM (see ref. [19]
for a thorough discussion), and evidently extend to the
3P0 model, which is qualitatively very similar for orbital
excitations.

The decay widths for the ∆ resonances are practically
all correct for the SR GBE CQM. In case of the other
models the one or the other shortcoming appears.

4.3 η decays

Table 5 also gives the results for η decays. Here we use
the same spatial part for the meson wave function as for

π decays but the constant γ is adjusted so as to reproduce
the η decay width of the N1535 resonance. Note that this
gives values for γ about a factor 3 smaller than for the
π decays, in contrast to other works [21], where the same
value was employed to describe both the π and η decays.
This has several reasons, the most imminent one being the
replacement according to eq. (14). Furthermore, we use an
unmixed flavor wave function for the η meson, i.e. a pure
flavor octet state. For nonstrange decays as regarded in
this work, a possible mixing would only influence the nor-
malization of this wave function, which can effectively be
absorbed into the coupling constant γ. Finally, an impor-
tant contribution comes from our choice of phase space, as
given by eq. (16). We use a fully relativistic prescription
and experimental values for the meson masses, in contrast
to ref. [21], where a much higher, “effective” value for the
pion mass was employed. A quick estimate of the mag-
nitudes of these three effects shows indeed that we end
up with about a factor of 3 difference in the constant γ
between π and η decays.

The η widths of the Roper resonance N1440 for the
GBE parameterizations (NR as well as SR) are rigorously
zero, since in both cases the theoretically predicted masses
lie below the η threshold, in accordance with experiment.
For the OGE parameterizations, the decay N1440 → Nη
is possible, the corresponding widths remain rather small,
however.

In total, there are four resonances predicted with con-
siderable branching ratios in the η decay channel. Only for
the N1535 and N1650 resonances one can compare to exper-
iment, since these are the only ones with an experimental
width assigned by the PDG [12]. The relative magnitudes
of the experimental decay widths in both of these cases
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Table 7. Same as table 5 but using a Gaussian-type meson wave function with rπ = rη = 0.36 fm.

N∗ Jπ Γ (N∗ → Nπ) (MeV) Γ (N∗ → Nη) (MeV)

GBE SR GBE NR OGE SR OGE NR Exp. GBE SR GBE NR OGE SR OGE NR Exp.

N1440
1
2

+
240 69 546 44 (227 ± 18)+70

−59 2 4

N1710
1
2

+
6 13 63 26 (15 ± 5)+30

−5 9 1 18 4

∆1232
3
2

+
120 120 120 120 (119 ± 1)+5

−5

∆1600
3
2

+
0 2 24 63 (61 ± 26)+26

−10

N1520
3
2

−
89 88 81 137 (66 ± 6)+9

−5 0 0 3 0

N1535
1
2

−
584 106 953 195 (67 ± 15)+55

−17 64 64 64 64 (64 ± 19)+76
−15

N1650
1
2

−
122 14 227 28 (109 ± 26)+36

−3 128 80 156 109 (10 ± 5)+4
−1

N1675
5
2

−
26 22 32 46 (68 ± 8)+14

−4 1 2 1 3

N1700
3
2

−
4 4 5 8 (10 ± 5)+3

−3 0 0 0 1

∆1620
1
2

−
61 8 106 16 (38 ± 8)+8

−6

∆1700
3
2

−
21 18 17 34 (45 ± 15)+20

−10

N1680
5
2

+
50 41 93 226 (85 ± 7)+6

−6 0 0 1 3

N1720
3
2

+
489 85 1063 352 (23 ± 8)+9

−5 12 8 24 23

γ 20.575 20.695 22.699 17.997 6.844 10.060 6.430 6.619

are missed by all theoretical models. This is again remi-
niscent of the EEM, where a similar effect is found. One
may expect that the decays of these resonances are quite
sensitive to spin-orbit and/or tensor forces in the quark-
quark interaction. The inclusion of these force components
would probably improve the description of both Nπ and
Nη decays for these resonances.

In addition to N1535 and N1650, also the widths of
the N1710 and the N1720 resonances come out apprecia-
bly large. The PDG does not quote any experimental data
for these states. This does not necessarily mean that their
widths are vanishing or too small to be measured. It may
simply be the case that experimental ambiguities do not
(yet) allow for a reliable determination. In fact, there are
single partial-wave analyses that assign an appreciable η
decay width, for example, also to the N1710, see ref. [23].

4.4 Influences of the meson wave function

The modified 3P0 decay model has two decisive ingredi-
ents: the pair creation strength γ and the parameter deter-
mining the extension of the meson wave function. While
the former is merely a multiplicative constant, which may
be suitably chosen to scale the overall strength of all de-
cays, the latter is a nonlinear parameter, which may also
alter the qualitative features of various predictions. In the
following we consider certain different choices of the me-
son wave functions and examine their influences on the
decay widths.

In table 6 we show results for decay widths when em-
ploying a Yukawa-like meson wave function, as given by
eq. (18), producing the same meson size as the Gaussian
parameterization before. We have adjusted the parameter

γ again to fit the ∆ and N1535 widths for Nπ and Nη
decays, respectively. However, as compared to table 5, the
values change only little in this case.

By comparing the results in tables 5 and 6 it is imme-
diately seen that the specific form of the meson wave func-
tion has only a minor influence on the predictions of the
decay widths for the π as well as η decay modes. The quali-
tative features remain essentially unchanged. We have also
performed calculations with the exact meson wave func-
tion produced by the potential of Bhaduri et al. (as shown
in fig. 3). They confirm the conclusion that the type of me-
son wave function is not decisive, provided its extension
(meson radius) is kept the same.

We now focus the attention on the dependence of the
results on the size of the meson. The meson wave functions
employed in tables 5 and 6 both correspond to a radius
of rπ = 0.565 fm. In the limit rπ → 0 one expects to
reproduce the results of the EEM. Thus it is interesting
to look at an intermediate regime. Table 7 gives the decay
widths for the same case as in table 5, but for a Gaussian-
type wave function leading to a meson radius as small as
0.36 fm.

First we note that the values for the constant γ ob-
tained in this case are considerably larger than before.
This is understandable, since in order to recover the re-
sults of the point-like meson limit, one has to compensate
for the effect of the δ function, which then replaces the
meson wave function. In particular, for the Gaussian form
of eq. (17) one has the relation

(2π)
3
2 δ(�r ) = lim

R→0

( π

R2

) 3
4

ΨG(�r ). (19)

Most of the results for the decay widths are now rather
different from before. They follow the general trend to-
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wards the predictions typical for the EEM. One of the
characteristic results of the EEM is the extremely small
decay width of the Roper resonance, as the first radial ex-
citation of the nucleon; it is due to the orthogonality of the
initial and final-state wave functions, which is strikingly
felt in case of the EEM. The results of table 7 show the
corresponding trend rather clearly: for all spectroscopic
models the N1440 widths come out at least a factor of 2
smaller than before, while one is still rather far away from
the point-like limit.

Concerning the η decays one observes that the differ-
ences in the widths between the N1535 and N1650 reso-
nances now increase in all cases. Again this follows the
(unpleasant) trend towards the predictions typical for the
EEM. As a result it appears favourable to use a decay
model that permits the use of meson wave functions with
finite extensions.

5 Summary and conclusion

In this work we investigated the theoretical description
of π and η decays for N and ∆ resonances. In the first
instance, we were interested in the predictions of the spe-
cific chiral constituent quark model whose hyperfine in-
teraction is based on GBE dynamics [4,10]. A detailed
comparison to the modern experimental data base [12] is
provided. We also studied the results relative to the pre-
dictions by a traditional CQM [8] based on OGE but re-
lying on the same type of force components as the GBE
CQM. Furthermore, we investigated the differences be-
tween a semirelativistic and a nonrelativistic description
of the baryon states for both types of CQMs. For the decay
mechanism a modified version of the 3P0 model [11] was
employed which improves upon the EEM used in earlier
studies [18] and allows one to incorporate a microscopic
description of the decay process. We also examined the
sensitivity of the results on the ingredients entering the
decay operator, notably the analytical form and the ex-
tension of the meson wave functions.

From the present results it is still difficult to draw def-
inite conclusions about the quality of the wave functions
stemming from different CQMs. In fact, the various de-
cay widths seem to be more determined by the choice of
the SR or NR parameterizations rather than by the use
of either type of dynamics, GBE or OGE. At this stage,
we find a number of gross qualitative features that have
been observed already before in similar studies along the
classical 3P0 decay model.

It should be recalled that here we have not included
spin-orbit or tensor forces into the quark model Hamilto-
nians, especially because these force components are not
yet provided by the published versions of the GBE CQM
and we wanted to produce a consistent comparison with
the other type of dynamics, namely the one resulting from
OGE. Some decay widths are certainly sensitive to tensor
and spin-orbit components in the wave functions. In this
respect it may have been somewhat premature to make a
comparison with experimental data at this stage.

In any case, our study reveals (and confirms previ-
ous such findings) that the description of strong decays of
baryon resonances within present CQMs is not yet fully
satisfactory. While incorporating the effects of the ten-
sor and spin-orbit forces could help in a few cases (where
mixing effects are expected to be important), one may
not expect that they will solve the problem caused by the
large widths obtained in the SR parameterizations. This
problem persists in all cases we considered. Similar find-
ings were made in other works [11,21,22]. The reason is
probably a large amount of high-momentum components
in the wave functions or, equivalently, the smallness of the
baryons. In this respect, the better results from the NR
CQM also suggest that the weight of the high-momentum
components is perhaps too large. The corresponding dif-
ferences between the NR and SR cases directly originate
from the type of kinetic-energy operator employed in the
calculation.

On the other hand, one must realize that the 3P0 model
may also fall short as it is based on intuitive grounds and
lacks a firm theoretic foundation. Further modifications of
the corresponding operator, including a form factor [21]
or factors 1/E [24] have been considered with some suc-
cess but no spectacular improvement. A consistent micro-
scopic description of the strong-decay processes within the
framework of CQMs thus remains a challenging task. The
ultimate goal would, of course, be a unified description of
the resonance spectra and the hadronic, as well as electro-
magnetic, transitions with the same dynamical scheme.

The authors are indebted to Fl. Stancu, D. Rebreyend, and
J.P. Bocquet for useful discussions. This work was supported
by the Scientific-Technical Agreement “Amadée” between Aus-
tria and France under contract number II.9 and by the TMR
contract ERB FMRX-CT96-0008.
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11. F. Cano, P. González, S. Noguera, B. Desplanques, Nucl.
Phys. A 603, 257 (1996).

12. Particle Data Group (D.E. Groom et al.), Eur. Phys. J. C
15, 1 (2000).

13. C. Becchi, G. Morpurgo, Phys. Rev. 149, 1284 (1966).
14. A. Mitra, M. Ross, Phys. Rev. 158, 1630 (1967).
15. D. Faiman, A.W. Hendry, Phys. Rev. 173, 1720 (1968);

Phys. Rev. Lett. 44, 845 (1980).
16. Fl. Stancu, P. Stassart, Phys. Rev. C 39, 343 (1996).
17. R. Koniuk, N. Isgur, Phys. Rev. D 21, 1868 (1980).
18. L. Ya. Glozman W. Plessas, L. Theussl, K. Varga, R.F.

Wagenbrunn, πN Newslett. 14, 99 (1998).

19. A. Le Yaouanc, Ll. Oliver, O. Pène, J.-C. Raynal, Hadron
Transitions in the Quark Model (Gordon and Breach Sci-
ence Publishers, New York, 1988).

20. Z. Papp, A. Krassnigg, W. Plessas, Phys. Rev. C 62,
044004 (2000).

21. S. Capstick, W. Roberts, Phys. Rev. D 47, 1994 (1993).
22. Fl. Stancu, P. Stassart, Phys. Rev. D 38, 233 (1988).
23. M. Batinic, I. Slaus, A. Svarc, B.M.K. Nefkens, Phys. Rev.

C 51, 2310 (1995); T.P. Vrana, S.A. Dytman, T.-S.H. Lee,
Phys. Rep. 328, 181 (2000).
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